Physical Regularities of the Synthesis of Titanium Based Composite Powders for Additive Manufacturing

A. G. Knyazeva, E. N. Korosteleva, O. N. Kryuakova, G. A. Pribitkov, Yu. A. Chumakov

Abstract


The review is presented to show the investigations of authors of this paper directed to the development of the way of composite powders creation of the system Ti-C. The synthesis of composites is carried out in the mode of layered combustion and/or in the mode of regulated thermal explosion. Obtained cakes are crushed, and then the necessary fraction was separated. Sinterability of powders is studied in laboratory conditions with the regulation of the heating rate and sintering temperature. The possibility to use the obtained composite powders is studied for the technologies of surface modification and specimen creation at the conditions of electron beam controlling. The investigation of the structure of synthesized powder and sintered specimens speak on the irreversible composition of the synthesis products. Each stage of the investigation is accompanied by mathematical modeling. For example, mathematical model of the composite synthesis in the combustion mode takes into account the stage of initiation of igniter. The model of thermal explosion includes the dynamical conditions of the heating and the reaction retardation by the reaction product. Electron-beam alloying model describes the properties evolution and powder layer shrinkage. The qualitative compliance of theory and experiment were demonstrated.

Full Text:

PDF

References


Gibson I., Rosen D., Stucker B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Berlin, Springer-Verlag, 2015, 498 p.

Cooke A., Slotwinski J. Properties of Metal Powders for Additive Manufacturing: A Review of the State of the Art of Metal Powder Property Testing, NIST Pubs, 2012. DOI: 10.6028/NIST.IR.7873

Zwikker U. Titan und Titanlegirungen, Berlin, Springer-Verlag, 1974, 717 p.

Gorynin I.V., Chehulin B.B. Titan v mashinostroenii [Titanium in machine building], Мoscow, Metallurgiya, 1990, 400 p. (in Russ.)

Janaki Ram G.D., Yang Y., Stucker B.E. Deposition of Ti/TiC Composite Coatings on Implant Structures Using Laser Engineered Net Shaping, Proccedings. of The 18th Solid Freeform Fabrication Symposium – An additive Manufactur-ing Conference, Austin, 2007, pp. 527-539.

Hamedy M.J., Torkamany M.J., Sabbaghzadeh J. Ef-fect of pulsed laser parameters on insitu TiC synthesis in laser surface treatment, Optics and Lasers in Engineering, 2011, vol.49, pp. 557-563. DOI: 10.1016/j.optlaseng.2010.12.002

Ochonogor O.F., Meacock C., Abdulwahab M. et al. Effect of Ti and TiC ceramic powder on laser cladded Ti-6Al-4V in situ intermetallic composite, Applied Surface Science, 2012, vol.263, pp. 591-596. DOI: 10.1016/j.apsusc.2012.09.114

Mahamood R.M., Akinlabi E.T. Laser metal deposition of functionally graded Ti6Al4V/TiC, Materials and design, 2015, vol.84, pp. 402-410. DOI: 10.1016/j.matdes.2015.06.135

Liu D., Zhang S.Q., Li A., Wang H.M. High temperature mechanical properties of a laser melting deposited TiC/TA15 titanium matrix composite, Journal of Alloys and Compounds, 2010, vol.496, pp. 189-195. DOI: 10.1016/j.jallcom.2010.02.120

Liu D., Zhang S.Q., Li A., Wang H.M. Microstructure and tensile properties of a laser melting deposited TiC/TA15 titanium matrix composite, Journal of Alloys and Compounds, 2009, vol.485, pp. 156-162. DOI: 10.1016/j.jallcom.2009.05.112

Candel J.J., Amigo V., Ramos J.A., Busquets D. Sliding wear resistance of TiCp reinforced titanium composite coating produced by laser cladding, Surface and Coatings Technolo-gy, 2010, vol.204, pp. 3161-3166. DOI: 10.1016/j.surfcoat.2010.02.070

Zhang Y.Y.D., Yan W., Zheng Y. Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding, Optics and Lasers in Engineering, 2010, vol.48, pp. 119-124. DOI: 10.1016/j.optlaseng.2009.08.003

Zhang K, Zou J., Li J. et all. Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders, Transactions of Nonferrous Metals Society of China, 2010, vol.20, pp. 2192-2197. DOI: 10.1016/S1003-6326(09)60441-6

Gu D., Meng G., Li C. et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement, Scripta Materialia, 2012, vol.67, pp. 185-188. DOI: 10.1016/j.scriptamat.2012.04.013

Langelier B.C., Esmaeili S. Insitu laser fabrication and characterization of TiC-containing TiC-Co composite in pure Ti substrate, Journal of Alloys and Compounds, 2009, vol.482, pp. 246-252. DOI: 10.1016/j.jallcom.2009.03.168

Wang F., Mei J., Wu X. Compositionally graded Ti6Al4V+TiC made by direct laser fabrication using powder and wire, Materials and Design, 2007, vol.28, pp. 2040-2046. DOI: 10.1016/j.matdes.2006.06.010

Zhang J., Zhang Y., Liou F. et al. A Microstructure and Hardness Study of Functionally Graded Materials Ti6Al4V/TiC by laser Metal Deposition, Proccedings of The 26th Solid Freeform Fabrication Symposium – An additive Manufacturing Conference, Austin, 2015, pp. 664-673.

Liu W., DuPont J.N. Fabrication of functionally graded TiC/Ti composites by Laser Engineering Net Shaping, Scripta Materialia, 2003, vol.48, iss. 9, pp. 1337-1342. DOI: 10.1016/S1359-6462(03)00020-4

Bataev I.A., Bataev A.A., Golkovski M.G. et al. Structure of surface layers obtained by atmospheric electron beam cladding of graphite-titanium powder mixture on to titanium surface, Applied Surface Science, 2013, vol. 284, pp. 472-481. DOI: 10.1016/j.apsusc.2013.07.121

Rogachev A.S., Mukasyan A.S. Gorenie dlya sinteza materialov [Combustion for materials synthesis], Moscow, Fizmatlit, 2013, 400 p. (in Russ.)

Pribytkov G.A., Krinitsin M.G., Korzhova V.V. Investigation of the products of SH-synthesis in powder mixtures of titanium and carbon containing an excess of titanium [Issle-dovania productov SV-sinteza v poroshkovykh smesyakh titana i ugleroda, soderzhashchikh izbytok titana], Perspectivnye materialy [Advanced materials], 2016, no.5, pp. 59-68. (in Russ.)

Strunina A.G., Firsov A.N., Kostin S.V. Transition modes in the combustion of heterogeneous systems with solid-phase products, Combustion, Explosion, and Shock Waves, 1981, vol.17, no.5, pp. 500-505. DOI: 10.1007/BF00798134

Barzikin V.V. Thermal explosion under linear heating, Combustion, Explosion, and Shock Waves, 1973, vol.9, no.1, pp. 29-42. DOI: 10.1007/BF00740358

Evstigneev V.V., Smirnov E.V., Afanasev A.V. et al. Dynamical thermal explosion in mechanically activated powder mixtures [Dinamicheskiy teplovoy vzriv v mehanicheski activirovannyh poroshkovyh smesyah], Polzinovskiy vestinik [The bulletin of Polzunov], 2007, no.4, pp.162-167. (in Russ.)

Korchagin M.A. Thermal explosion in mechanically activated low-calorific-value compositions, Combustion, Explosion, and Shock Waves, 2015, vol.51, no.5, pp. 578-586. DOI: 10.1134/S0010508215050093

Lapshin O.V., Smolyakov V.K. Thermal explosion in a gasless system undergoing a phase transition, Russian Journal of Physical Chemistry B, 2015, vol. 9, iss. 2, pp. 255-260. DOI: 10.1134/S1990793115020086

Filimonov V.Yu., Koshelev K.B. Adiabatic thermal explosion in disperse condensed systems with limited solubility of the reactants in the product layer, Combustion, Explosion, and Shock Waves, 2013, vol.49, no.4, pp. 463-471. DOI: 10.1134/S0010508213040096

Merzhanov A.G., Dubovitskiy F.I. State-of-the-art of the theory of thermal explosion [Sovremennoe sostoyznie teorii teplovogo vzriva], Uspehi himii [Russian Chemical Reviews], 1966, vol.35, iss.4, pp.656-683. (in Russ.)

Merzhanov A.G., Barzikin B.G., Abramov V.G. Theory of thermal explosion: from Semenov to our days [Teoriya teplova vzriva: ot Semenova do nashih dney], Himicheskaya fizika [Chemical Physics], 1996, vol.15, no.6, pp. 3-44. (in Russ.)

Velikanov T.Ya. Carbon-Titanium [Uglerod- Titan], Diagrammi sostoyaniya dvoynih metallicheskih sistem [Diagrams of the state of double metalicl systems], Moscow, Mashinostroenie, 1996, pp.769-771. (in Russ.)

Krinitcyn M.G., Pribytkov G.A., Korosteleva E.N. Structure of Sintered Ti – TiC Materials, Applied Mechanics and Materials, 2014, vol. 682, pp. 127-131. DOI: 10.4028/www.scientific.net/AMM.682.127

Kryukova O. N. Knyazeva A. G. Critical phenomena in particle dissolution in the melt during electron-beam surfacing, Journal of Applied Mechanics and Technical Physics, 2007. vol.48, iss.1, pp. 109-118. DOI: 10.1007/s10808-007-0015-x

Kryukova O. N. Knyazeva A. G. Comparative analysis of one-dimensional and two-dimensional models of electron beam surfacing of the coatings with modifying particles [Sravnitelnyi analiz odnomernoy i dvumernoy modeley elec-tronno-luchevoy naplavki s modifitsiruyushtcimi chastitsami], Vestnik PNRPU. Mehanika, [Mechanics Bulletin], 2005, no.13, pp. 123-131. (in Russ.)

Sorokova S. N. Knyazeva A. G. Simulation of coating phase structure formation in solid phase synthesis assisted by electron-beam treatment, Theoretical Foundations of Chemi-cal Engineering, 2008, vol.42, iss.4, pp. 443-451. DOI: 10.1134/S0040579508040131




DOI: http://dx.doi.org/10.24892/RIJIE/20170401

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 A. G. Knyazeva, E. N. Korosteleva, O. N. Kryuakova, G. A. Pribitkov, Yu. A. Chumakov

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818

E-mail: indust.engineering.ru@gmail.com

Another version of the web site: http://indust-engineering.ru