Influence of Selective Laser Melting Process Parameters on Porosity of TiAl6V4 Alloy

R. M. Baitimerov, L. V. Radionova, E. V. Safonov


In this research TiAl6V4 titanium base alloy was used for Selective Laser Melting (SLM). This alloy is widely used in aerospace and medical industries. For determination of influence of SLM process parameters on TiAl6V4 10x10x5 mm specimens were fabricated by using different SLM process parameters. The porosity of fabricated specimens was determined by microscopy analysis of cross-sections. The lowest porosity that was achieved is about of 0.5%.

Full Text:



Wagner S.M., Walton R.O. Additive manufacturing’s impact and future in the aviation industry, Prod. Plan.

Control, 2016, vol. 27, is. 13, pp. 1124-1130. DOI: 10.1080/09537287.2016.1199824

Uhlmann E., Kersting R., Klein T.B. et al. Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, 2015, vol. 35, pp. 55-60. DOI: 10.1016/j.procir.2015.08.061

Wauthle R., J. van der Stok, Amin Yavari S. et al. Additively manufactured porous tantalum implants, Acta Biomater, 2015, vol.14, pp. 217-225. DOI: 10.1016/j.actbio.2014.12.003

Mroz W., Budner B., Syroka R. et al. In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser deposition, J. Biomed. Mater. Res. - Part B Appl. Biomater, 2015, vol. 103, is. 1, pp. 151-158. DOI: 10.1002/jbm.b.33170

Wang H., Zhao B., Liu C. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One, 2016, vol. 11, is. 7. DOI: 10.1371/journal.pone.0158513

Gu D.D., Meiners W., Wissenbach K. Laser additive manufacturing of metallic components: materials, processes and mechanisms, International Materials Reviews, 2012, vol. 57, is. 3, pp. 133-164. DOI: 10.1179/1743280411Y.0000000014

Bandyopadhyay A., Espana F., Balla V.K. et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomaterialia, 2010, vol. 6, is 4, pp. 1640-1648. DOI: 10.1016/j.actbio.2009.11.011

Thijs L., Verhaeghe F., Craeghs T. et al. A study of the micro structural evolution during selective laser melting of Ti-6Al-4V, Acta Materialia, 2010, vol. 58, is 9, pp. 3303-3312. DOI: 10.1016/j.actamat.2010.02.004

Facchini L., Magalini E., Robotti P. et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyping Journal, 2010, vol. 16, is 6, pp. 450-459. DOI: 10.1108/13552541011083371

Song B.B., Dong S., Liao H., Coddet C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, The International Journal of Advanced Manufacturing Technology, 2012, vol. 61, is. 9-12, pp. 967-974. DOI: 10.1007/s00170-011-3776-6

Sun J., Yang Y., Wang D. Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting, Advances in Mechanical Engineering, 2012, vol. 2012, 11 p. DOI: 10.1155/2012/427386

Van Hooreweder B., Moens D., Boonen R. et al. Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting, Adv. Eng. Mater., 2012, vol. 14, is. 1-2, pp. 92-97. DOI: 10.1002/adem.201100233

Leuders S., Thöne M., Riemer A. et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, International Journal of Fatigue, 2013, vol. 48, pp. 300-307. DOI: 10.1016/j.ijfatigue.2012.11.011

Li H.X., Huang B.Y., Sun F., Gong S.L. Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting, Rare Met. Mater. Eng., 2013, vol. 42, pp. 209-212.

Sun J., Yang Y., Wang D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Optics & Laser Technology, 2013, vol. 49, pp. 118-124. DOI: 10.1016/j.optlastec.2012.12.002

Gong H., Rafi K., Gu H. et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Additive Manufacturing, 2014, vol. 1, pp. 87-98. DOI: 10.1016/j.addma.2014.08.002

Dhansay N.M., Tait R., Becker T. Fatigue and Fracture Toughness of Ti-6Al-4V Titanium Alloy Manufactured by Selective Laser Melting, Adv. Mater. Res., 2014, vol. 1019, pp. 248-253. DOI: 10.4028/

Bartolomeu F., Faria S., Carvalho O. et al. Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting, Materials Science and Engineering: A, 2016, vol. 663, pp. 181-192. DOI: 10.1016/j.msea.2016.03.113

Yang J., Yu H., Yin J. et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater. Des., 2016, vol. 108, pp. 308-318. DOI: 10.1016/j.matdes.2016.06.117

Spierings A.B., Schneider M., Eggenberger R. Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J., 2011, vol. 17, is. 5, pp. 380-386. DOI: 10.1108/13552541111156504

Vilaro T., Colin C., Bartout J.D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, vol. 42, is. 10, pp. 3190-3199. DOI: 10.1007/s11661-011-0731-y

Tolochko N.K., Laoui T., Khlopkov Y.V, et al. Absorptance of powder materials suitable for laser sintering, Rapid Prototyp. J., 2000, vol. 6, is 3, pp. 155-160. DOI: 10.1108/13552540010337029



  • There are currently no refbacks.

Copyright (c) 2018 R. M. Baitimerov, L. V. Radionova, E. V. Safonov

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818


Another version of the web site: