Discrete and Continuous Identification Algorithms of the Power Electric System in the State Space

M. H. Hajiyev, V. V. Korobka, Yu. V. Sharov, V. N. Ryabchenko

Abstract


Algorithms for identification of the linear model power system in the state space in the form of discrete and continuous systems for cases with single and multiple inputs and one multiple output. The necessary conditions are a priori identifiability properties of controllability and observability. Results recursive criteria for checking the conditions of controllability and observability. The work is illustrated by a practical example of the identification of the 25-machine power system.

References


Golub G.H., Van Loan C.F. Matrix Computations, Johns Hopkins University Press, 1996, 728 p.

Grop D. Metody identifikacii sistem [Methods of identifying systems], Moscow, Mir, 1979, 302 p. (in Russ.)

Dorf R.C., Bishop R.H. Modern control systems, Addison-Wesley, 1998.

Zybin E.Yu., Misrikhanov M.Sh., Ryabchenko V.N. On the solution of the identification problem of linear discrete systems by the canonization method [O reshenii zadachi identifikacii lineynyh diskretnyh sistem metodom kanonizacii], Vestnik IGEU [Bulletin of ISEU], 2005, no.5, pp. 192-196. (in Russ.)

Zybin E.Yu., Misrikhanov M.Sh., Ryabchenko V.N. Recursive controllability and observability tests for large dynamic systems [Rekursivnye testy na upravlyaemost' i nablyudaemost' bol'shikh dinamicheskikh system], Avtomatika i Telemekhanika [Automation and Remote Control], 2006, no.67 (5), pp. 783-795. (in Russ.)

Liung L. Identification of systems. Theory for the user. 2nd ed. PTR Prentice Hall, Upper Saddle River, 1999, 609 p.

Fedosov E.A., Krasovskiy A.A., Popov E.P., ets. Mashinostroenie: entsiklopediya v 40 tomakh. T. I-4: Avtomaticheskoe upravlenie. Teoriya. [Mechanical engineering: encyclopedia in 40 volumes. T. I-4: Automatic control. Theory], Moscow, Mashinostroenie, 2000, 688 p. (in Russ.)

Misrikhanov M.Sh. Klassicheskie i novye metody analiza mnogomernyh dinamicheskih sistem [Classical and new methods of analysis of multidimensional dynamic systems], Moscow, Energoatomizdat. 2004, 566 p. (in Russ.)

Mikrin E.A., Zubov N.E., Ryabchenko V.N. Matrichnye metody v teorii i prak-tike sistem avtomaticheskogo upravleniya letatel'nymi apparatami [Matrix methods in the theory and practice of automatic control systems for aircraft], Moscow, MGTU imeni N.EH. Baumana, 2016, 667 p. (in Russ.)

Misrikhanov M.Sh., Ryabchenko V.N. Algebraic and matrix methods in the theory of linear MIMO-systems [Algebraicheskie i matrichnye metody v teorii linejnyh MIMO-sistem], Vestnik IGEU [Bulletin of ISEU], 2005, vol. 5, pp. 196-240. (in Russ.)

Sibirskiy K.S. Vvedenie v algebraicheskuyu teoriyu invariantov differencial'nyh uravnenij [Introduction to the algebraic theory of invariants of differential equations], Kishinev, Shtiinca, 1982, 167 p. (in Russ.)

Eykkhoff P. (Eds.) Sovremennye metody identifikacii [Modern identification methods], Moscow, Mir, 1983, 402 p. (in Russ.)

Tuzlukova E.V. Razvitie metodov analiza dinamiche-skih svoystv ehnergosistem na osnove resheniya chastichnoy problemy sobstvennyh znacheniy [Development of methods for analyzing the dynamic properties of power systems based on solving a partial eigenvalue problem], Diss. … kand. tekhn. nauk, Мoscow, Moscow Power Engineering Institute, 2004, 195 p. (in Russ.)

Sharov Yu.V. On the development of methods for analyzing the static stability of electric power systems [O razvitii metodov analiza staticheskoy ustoychivosti ehlektroehnergeticheskih system], Electricity [Ehlektrichestvo], 2017, no.1, pp. 12-18. (in Russ.)

Tsypkin Ya.Z. Osnovy informacionnoy teorii identifikacii [Fundamentals of the Information Theory of Identification], Moscow, Nauka, 1984, 248 p. (in Russ.)

Brillinger D.R. Time Series: Data Analysis and Theory, New York, McGraw-Hill, 1981, 561 p.

Caines P.E. Linear Stochastic Systems, New York, John Wiley & Sons, 1988, 874 p.

Kailath T. Linear Systems. Englewood Cliffs, New Jersey, Prentice Hall, 1980, 682 p.

Karlsson E., Soderstrom T., Stoica P. Computing the Cramer-Rao lower bound for noisy input output systems, Signal Processing, 2000, vol. 80, no.11, pp. 2421-2447.

Mahata K., Garnier H. Direct identification of continuous-time errors-in-variables models, Preprints of the 16th World Congress of the International Federation of Automatic Control, Prague, 2005.

Middleton R.H., Goodwin G.C. Digital Control and Estimation, London, Prentice-Hall, 1990.

Phadke A.G., Thorp J.S. Synchronized Phasor Measurements and Their Applications, Springer, 2008, 254 p.

Pintelon R.I. On the frequency scaling in continuous–time modeling, IEEE Trans. Instrum. Meas., 2005, vol. 53, no.5, pp. 318-321.

Pintelon R., Schoukens J. System Identification: A Frequency Domain Approach, Hoboken, John Wiley & Sons, 2012, 788 p.

Pintelon R., Schoukens J. Box-Jenkins identification revisited. Part I: theory, Automatica, 2005, vol. 42, no.1, pp. 63-75.

Pintelon R., Schoukens J. Box-Jenkins identification revisited. Part II: applications, Automatica, 2005, vol. 42, no.1, pp. 77-84.

Soderstrom T., Hong M., Zheng W.X. Convergence properties of bias–eliminating algorithms for errors in variables identification, International Journal of Adaptive Contr. and Signal. Processing, 2005, vol. 19, no.9, pp. 703-722.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 M. H. Hajiyev, V. V. Korobka, Yu. V. Sharov, V. N. Ryabchenko

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818

E-mail: indust.engineering.ru@gmail.com

Another version of the web site: http://indust-engineering.ru