Interaction of Exogenous Nanoparticles Al2O3 and MgAl2O4 with Copper, Dissolved in Iron Melts

V. T. Burtsev, S. N. Anuchkin, A. V. Samokhin

Abstract


The processes of interaction of exogenous nanoparticles Al2O3 and MgAl2O4 with iron melts containing surfactant-copper have been studied. Thermodynamic calculations confirmed the choice of these nanoparticles. The dependence of the degree of copper removal during heterophase interaction on size factors was studied: the time of isothermal holding after nanoparticle introduction, the type of nanoparticles, and the concentration of copper in the metal. It was shown that the introduction of Al2O3 nanoparticles led to a decrease in the copper content from 9 to 20 rel. %, and MgAl2O4 - from 10 to 24 rel. %. After the introduction of Al2O3 into stainless steel, the degree of copper removal was from 6 to 23 rel. %, depending on the holding time of nanoparticles in the melt and their concentration.

Full Text:

PDF

References


Daehn K.E., Serrenho A. Cabrera, Allwood J.M. How Will Copper Contamination Constrain Future Global Steel Recycling?, Environmental Science and Technology, 2017, vol. 51, no. 11, pp. 6599-6606. DOI: 10.1021/acs.est.7b00997

Shahpazov E.Kh., ZaitsevA.I., Mogutnov B.M. Scientific basis for steel refining from copper, tin and other colored impurities [Nauchnye osnovy rafinirovaniya stali ot medi, olova i drugikh tsvetnykh primesey], Problemy chernoy metallurgii i materialovedeniya [Problems of ferrous metallurgy and materials science], 2010, no.3, pp. 5-12.

Kostecki Yu.V., KarpovV.P., OmelchenkoV.I., Pavlenko S.V. Technological aspects of the implementation of the method of sulfide refining iron-carbon melts from copper [Tekhnologicheskie aspekty realizatsii metoda sul'fidnogo rafinirovaniya zhelezouglerodistykh rasplavov ot medi], Donbas-2020: nauka і tekhnіka virobnitstvu: materialy IV nauchno-prakticheskoy konferentsii [Donbas-2020: Science and Technological Development: Proceedings of the IV Scientific Practical Conference], Donetsk, DonNTU, 2008, pp. 161-164.

ZigaloI.N., BaptismanskyV.I., Vyatkin Yu.F. et al. Copper in steel and problems of its removal [Med' v stali i problemy ee udaleniya], Stal' [Steel], 1991, no.7, pp. 18-22.

Guzenkova А.S., Ivanov S.S., Isaev G.A., Kudrin V.A. Proizvodstvo stali chistoy ot primesey tsvetnykh metallov [Production of steel clean from non-ferrous metal impurities] Moscow, MGVMI, 2008, 118 p.

Labaj J., Oleksiak B., Siwiec G. Study of cooper removal from liqud iron, Metalurgija, 2011, vol. 50, no.4. pp. 265-268.

Hu X., YanZ., Jiang P. et al. Removal of Copper from Molten Steel using FeO-SiO2-CaCl2 Flux, ISIJ International, 2013, vol. 53, no.5. pp. 920-922. DOI: 10.2355/isijinternational.53.920

Anuchkin S.N., Burtsev V.T., Samokhin A.V., Nails I.A. Effect of the size factors on the heterophase interaction of exogenous refractory compound nanoparticles with sulfur in a model nickel melt, Russian Metallurgy (Metally), 2012, no.3, pp. 178-184. DOI: 10.1134/s0036029512030020

Nedjad S. Hossein, Farzaneh A. Formation of fine intragranular ferrite in cast plain carbon steel inoculated by titanium oxide nanopowder, Scripta Materialia, 2007, vol. 57, no.10, pp. 937-940. DOI: 10.1016/j.scriptamat.2007.07.016

Grigorenko G.M., KostinV.A., Golovko V.V. et al. Influence of nanopowder inoculators on the structure and properties of cast metal of high-strength low-alloy steels [Vliyanie nanoporoshkovykh inokulyatorov na strukturu i svoystva litogo metalla vysokoprochnykh nizkolegirovannykh staley], Sovremennaya elektro-metallurgiya [Modern electro-metallurgy], 2015, no.2 (119), pp. 32-41.

Anuchkin S.N., BurtsevV.T., Samokhin A.V., Serov G.V. Interaction of nanosized particles of Al2O3 and TiN with surfactants in Ni-base melt [Vzaimodeystvie nanorazmernykh chastits Al2O3 i TiN s PAV v rasplave na osnove nikelya], Physics and chemistry of materials processing [Fizika i khimiya obrabotki materialov], 2009, no.6, pp. 78-85.

Nogi K., Chung W.B., McLean A. et al. Surface tension of liquid Fe-(Cu, Sn, Cr) and Ni-(Cu, Sn) binary alloys, Materials Transactions JIM, 1991, vol. 32, no.2, pp. 164-168. DOI: 10.2320/matertrans1989.32.164

Khoroshavin L.B. Shpinelidnye nanoogneupory [Spinel nanoogneopori], Ekaterinburg, Ural Branch of RAS, 2009, 600 p.

Turkdogan E.T. Fizicheskaya khimiya vysokotemperaturnykh protsessov [Physical chemistry of high-temperature processes], Moscow, Metallurgy, 1985, 344 p.

Buzek Z. Fundamental Thermodynamic Data on Metallurgical Reactions and Interactions of Elements in System Significant for Metallurgical Theory and Practice, Ostrava, Vyzkumny ustav hutnictvi zeleza, 1979, 110 p.

Jacob K.T., Jayadevan P., Waseda Y. Electrochemical Determination of the Gibbs Energy of Formation of MgAl2O4, Journal of the American Ceramic Society, 1998, vol. 81, no.1, pp. 209-212. DOI: 10.1111/j.1151-2916.1998.tb02316.x

Najdych Yu.B. Kontaktnye yavleniya v metallicheskikh rasplavakh [Contact phenomena in metal melts], Kiev, Naukova Dumka, 1972, 196 p.

Fukami N., Wakamatsu R., Shinozaki N., Wasai K. Wettability between Porous MgAl2O4 Substrates and Molten Iron, Materials Transactions, 2009, vol. 50, no.11. pp. 2552-2556.

Anuchkin S.N., Gvozdkov I.A., Samokhin A.V. et al. Properties of mechanochemistry-produced Al2O3/Ni composite material [Svoystva kompozitsionnogo nanomateriala Al2O3/Ni, poluchennogo metodom mekhanokhimii], Fizika i khimiya obrabotki materialov [Physics and Chemistry of Materials Processing], 2011, no.2, pp. 71-78.

Minaev Yu.A. Poverkhnostnye yavleniya v metallurgicheskikh protsessakh [Surface phenomena in metallurgical processes], Moscow, Metallurgy, 1984, 152 p.

Anuchkin S.N., Burtsev V.T., Samokhin A.V. Interaction of alumina and alumomagnesium spinel nanoparticles with sulfur in model iron melts, Russian metallurgy (Metally). 2016, vol. 2016, no.1, pp. 4-11. DOI: 10.1134/s003602951601002x




DOI: http://dx.doi.org/10.24892/RIJIE/20190101

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 V. T. Burtsev, S. N. Anuchkin, A. V. Samokhin

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818

E-mail: indust.engineering.ru@gmail.com

Another version of the web site: http://indust-engineering.ru