Single Crystal Growth of Aluminum substituted Strontium Hexaferrite SrFe12-xAlxO19

A. Yu. Starikov, D. A. Vinnik, S. A. Gudkova


The paper presents the results of testing the technique for obtaining Al-substituted strontium hexaferrite SrFe12-xAlxO19 by spontaneous crystallization method. Using the scanning electron microscope JEOL JSM7001F equipped with an energy dispersive X-ray fluorescence analyzer INCA X-max 80 (Oxford Instruments), the chemical composition of the samples was established: for SrFe12O19 – 61,54%O, 35,53%Fe, 2,93%Sr; for SrFe12-0,67Al0,67O19 – 61,99%O, 33,27%Fe, 2,76%Sr, 1,98%Al.  A uniform distribution of iron, strontium and aluminum ions was detected. It was found that the samples obtained are monophasic. The crystal structure was studied by X-ray phase analysis using a Rigaku Ultima IV diffractometer. The crystal lattice parameters of the obtained sample are calculated for SrFe12-xAlxO19: a – 5,8792(8) Å; c – 23,011(3) Å; V – 688,83(13) Å3. The Curie temperatures were determined by differential scanning calorimetry: for SrFe12O19 – 450°С; for SrFe12-0,67Al0,67O19 – 435°С on the Netzsch 449C Jupiter.

Full Text:



Sivakumar M., Gedanken A., Zhong W. et al. Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5, Journal of Magnetism and Magnetic Materials, 2004, vol. 268, is. 1-2, pp. 95-104. DOI: 10.1016/S0304-8853(03)00479-7

Muhammad J.I., Saima F. Enhancement of electrical resistivity of Sr0,5Ba0,5Fe12O19 nanomaterials by doping with lanthanum and nickel, Materials Chemistry and Physics, 2009, vol. 118, is. 2-3, pp. 308-313. DOI: 10.1016/j.matchemphys.2009.07.056

Fu Y.P., Lin C.H., Pan K.Y. Strontium hexaferrite powders prepared by a microwave-induced combustion process and some of their properties, J. Alloys Compd, 2003, vol. 349, is. 1-2, pp. 228-231. DOI: 10.1016/S0925-8388(02)00867-8

Muhammad J.I., Muhammad N.A., Pablo H.-G., Jose Maria M. Synthesis, physical, magnetic and electrical properties of Al–Ga substituted co-precipitated nanocrystalline strontium hexaferrite, J. Magn. Magn. Mater., 2008, vol. 320, is. 6, pp. 881–886. DOI: 10.1016/j.jmmm.2007.09.005

Ketov S.V., Yagodkin Yu.D., Lebed A.L. et al. Structure and magnetic properties of nanocrystalline SrFe12O19 alloy produced by high-energy ball milling and annealing, J. Magn. Magn. Mater., 2006, vol. 300, is. 1, pp. e479-e481. DOI: 10.1016/j.jmmm.2005.10.199

Xu P., Han X.J., Wang M.J. Synthesis and Magnetic Properties of BaFe12O19 Hexaferrite Nanoparticles by a Reverse Microemulsion Technique, J. Phys. Chem. C. 2007, vol. 111, is. 16, pp. 5866-5870. DOI: 10.1021/jp068955c

Jacobo S.E., Herme C., Bercoff P.G. Influence of the iron content on the formation process of substituted Co–Nd strontium hexaferrite prepared by the citrate precursor method, J. Alloys Compd., 2010, vol. 495, is. 2, pp. 513-515. DOI: 10.1016/j.jallcom.2009.10.172

Sheenu J., JagdishS., Kailash C. et al. Structural, morphological, magnetic and optical properties of chromium substituted strontium ferrites, SrCrxFe12−xO19 (x = 0.5, 1.0, 1.5, 2.0 and 2.5) annealed with potassium halides, Powder Technol., 2011, vol. 212, is. 1, pp. 193-197. DOI: 10.1016/j.powtec.2011.05.014

Asghar G., Anis-ur-Rehman M. Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications, J. Alloys Compd., 2012, vol. 526, pp. 85-90. DOI: 10.1016/j.jallcom.2012.02.086

Kuo H.M., Hsui Te-Fa., Tuo Y.S., YuanMicrowave C.L. adsorption of core–shell structured Sr(MnTi)xFe12−2xO19/PANI composites, J. Mater. Sci., 2012, vol. 47, is 5, pp. 2264-2270. DOI: 10.1007/s10853-011-6038-y

Ali Sharbati, Khani Javad Mola Verdi, Amiri Gholam Reza Microwave absorption studies of nanocrystalline SrMnx/2(TiSn)x/4Fe12−xO19 prepared by the citrate sol–gel method. Solid State Commun, 2012, vol. 152, is. 3, pp. 199-203. DOI: 10.1016/j.ssc.2011.11.009

Muhammad Naeem Ashiq, Iqbal Muhammad Javed, Najam-ul-Haq Muhammad et al. Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices, J. Magn. Magn. Mater., 2012, vol. 324, is 1, pp. 15-19. DOI: 10.1016/j.jmmm.2011.07.016

You L.Q., Zheng J. The magnetic properties of strontium hexaferrites with La–Cu substitution prepared by SHS method, Journal of Magnetism and Magnetic Materials, 2007, vol. 318, is 1-2, pp. 74-78. DOI: 10.1016/j.jmmm.2007.04.028

Ounnunkada S., Winotai P. Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-autocombustion process, Journal of Magnetism and Magnetic Materials, 2006, vol. 301, is. 2, pp. 292-300. DOI: 10.1016/j.jmmm.2005.07.003

Nourbakhsh A.A., Noorbakhsh M., Nourbakhsh M. et al. The effect of nano sized SrFe12O19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics, Journal of Materials Science: Materials in Electronics, 2011, vol. 22, is. 9, pp. 1297-1302. DOI: 10.1007/s10854-011-0303-3

Clark T.M., EvansB.J., Thomson G.K. 57Fe Mössbauer spectroscopic investigation of complex magnetic structures in Ga, Sc, and In substituted M-type hexagonal ferrites, Journal of Applied Physics, 1999, vol. 85, no. 8, pp. 5229-5230. DOI: 10.1063/1.369952

Castellanos P.A.M., Rivera J.A., Fuentes A.C., Serrano R.L. Magnetic and microstructural properties of the Ti4+ – doped Barium hexaferrite, Journal of Magnetism and Magnetic Materials, 2004, vol. 280, is. 2-3, pp. 214-220. DOI: 10.1016/j.jmmm.2004.03.015

Albanese G., Carbucicchio M., Pareti L. et al. Magnetic and Mössbauer study of Al, Ga, In and Sc substituted Zn2-W hexagonal ferrites, Journal of Magnetism and Magnetic Materials, 1980, vol. 15-18, part 3, pp. 1453-1454. DOI: 10.1016/0304-8853(80)90365-0

Vinod N.D., Mane M.L., Keche A.P. et al. Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique, Physica B: Condensed Matter., 2011, vol. 406, is 4, pp. 789-793. DOI: 10.1016/j.physb.2010.11.094

Eraky M.R., Beslepkin A.A., Kuntsevich S.P. Magnetic properties and NMR studies of the SrAlM hexagonal ferrite system, Materials Letters, 2003, vol. 57, is. 22-23, pp. 3427-3430. DOI: 10.1016/S0167-577X(03)00092-2

Marlene C.M., McMurdie F. Howard, Eloise Evans H. Standard X-ray Diffraction Powder Patterns: Monogr. 25 – Sec. 18, Washington, Nat. Bur. Stand. (U.S.), 1981, 110 p.

Vinnik D.A., Mashkovtseva L.S., Gudkov S.A., Zherebtsov D.A. Strontium hexaferrite flux single crystal growth, Bulletin of SUSU. Series "Metallurgy", 2016, vol. 16, no. 2, pp. 34-39. DOI: 10.14529 / met160205

Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica, 1976, vol. A32, pp. 751-767. DOI: 10.1107/S0567739476001551



  • There are currently no refbacks.

Copyright (c) 2019 A. Yu. Starikov, D. A. Vinnik, S. A. Gudkova

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818


Another version of the web site: