Kinematic Viscosity of Melt Prepared from an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 ribbon

Ye. A. Kochetkova, Yu. N. Starodubtsev, V. S. Tsepelev


In this work, the viscosity of a melt prepared by melting an amorphous ribbon of Fe72.5Cu1Nb2Mo1.5Si14B9 alloy was studied. The amorphous ribbon was produced by rapid quenching of the melt, which was preheated at a temperature above (overheated mode) and below (not overheated mode) critical temperature Tk. A hysteresis loop was found in the temperature dependence of viscosity, the widest part of which falls on a temperature from 1670 K to Tk = 1760 K. In this temperature range, the melt has the highest activation energy and the largest cluster size. It has been proven that the melt viscosity increases with decreasing cluster size. In the low-temperature region, an overheated melt has the highest viscosity and the smallest cluster size comparable to the atomic size. It is shown that the heredity of the structure is preserved in the melt from the amorphous ribbon despite a number of structural transitions

Full Text:



Baum B.A. Metallicheskie zhidkosti – problemy i gipotezy [Metallic liquids - problems and hypotheses], Moscow, Nauka, 1979, 120 p. (in Russ.)

Lad'yanov V.I., Logunov S.V., Pakhomov S.V. Oscillating relaxation processes in non-equilibrium metal melts after melting [Ob ostsilliruyushchikh relaksatsionnykh protsessakh v neravnovesnykh metallicheskikh rasplavakh posle plavleniya], Metally [Metals], 1998, no.5, pp. 20-23. (in Russ.)

Vasin M.G., Ladyanov V.I. Structural transitions and non monotonic relaxation processes in liquid metals, Phys. Rev. E, 2003, vol. 68, 051202.

Lad'yanov V.I., BeltyukovA.L., Kamaeva L.V. et al. About structural transition and temporal instabiligy in liquid cobalt [O strukturnom perekhode i vremennoy nestabil'nosti v zhidkom kobal'te], Melts, 2003, no. 1, pp. 32-39. (in Russ.)

Zamyatin V.М., Baum B.A., Mezenin A.A., Shmakova K.Yu. Time dependences of melts properties, theirimportence, peculiarities and axplanation variants [Vremennye zavisimosti svoystv rasplavov, ikh znachenie, osobennosti i varianty ob''yasneniya], Melts, 2010, no. 5, pp. 19-31. (in Russ.)

Calvo-Dahlborg M., Popel P.S., Kramer M.J. et al. Superheat-dependent microstructure of molten Al-Si alloys of different compositions studied by small angle neutron scattering, J. Alloys Comp., 2013, vol. 550, pp. 9-22. DOI: 10.1016/j.jallcom.2012.09.086

Manov V.P., Popel S.I., Buler P.I. et al. The influence of quenching temperature on the structure and properties of amorphous alloys, Mater. Sci. Eng. A, 1991, vol. 133, pp. 535-540. DOI: 10.1016/0921-5093(91)90128-AGet rights and content

Starodubtsev Yu.N., Sleep L.D., Tsepelev V.S. et al. Influence of melt heating temperature on mechanical and magnetic properties of amorphous tape [Vliyanie temperatury nagreva rasplava na mekhanicheskie i magnitnye svoystva amorfnoy lenty], Melts, 1992, no.4, pp. 76-79. (in Russ.)

Tabachnikova E.D., Bengus V.Z., Egorov D.V. et al. Mechanical properties of amorphous alloys ribbon prepared by rapid quenching of the melt after different thermal treatments before quenching, Mater Sci Eng A, 1997, vol. 226-228, pp. 887-890. DOI: 10.1016/S0921-5093(97)80093-7Get rights and content

Tsepelev V., Starodubtsev Yu., Konashkov V. Melt viscosity of the soft magnetic nanocrystalline Fe72.5Cu1Nb2Mo1.5Si14B9 alloy, EPJ Web of Conferences, 2017, vol. 151, 04006. DOI: 10.1051/epjconf/201715104006

Tsepelev V., Konashkov V., Starodubtsev Y. et al. Optimum regime of heat treatment of soft magnetic amorphous materials, IEEE Trans. Magn., 2012, vol. 48, pp. 1327-1330. DOI: 10.1109/TMAG.2011.2175209

Batschinski A.I. Untersuchungen über die innere Reibungen der Flüssigkeiten, Z. phys. Chem., 1913, vol. 84, pp. 643-706.

Glasston S., Leidler K., Eyring G. Teoriya absolyutnykh skorostey reaktsiy. Kinetika khimicheskikh reaktsiy, vyazkost', diffuziya i elektrokhimicheskie yavleniya [Theory of absolute reaction rates. Kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena], Moscow, GIIL, 1948, 585 p. (in Russ.)

Longuet-Higgins H.C., Pople J.A. Transport properties of a dense fluid of hard speres, J. Chem. Phys., 1956, vol. 25, pp. 884-889. DOI: 10.1063/1.1743136

Poole Ch., Owens F. Nanotekhnologiya [Nanotechnology], Moscow, Technosphere, 2005, 334 p. (in Russ.)

Tsepelev V., Starodubtsev Yu., KonashkovV., Belozerov V. Thermomagnetic analysis of soft magnetic nanocrystalline alloys, J. Alloys and Comp., 2017, vol. 707, pp. 210-213. DOI: 10.1016/j.jallcom.2016.12.345

Lyasotskii I.V., Dyakonova N.B., Vlasova E.N. et al. Metastable and quasiperiodic phases in rapidly quenched Fe-B-Si-Nb(Cu) alloys, Phys. stat. sol. (a), 2006, vol. 203, pp. 259-270. DOI: 10.1002/pssa.200521126

Pan S.P., Qin J.Y., Gu T.K. et al. Correlation between local structure of metals and glass forming ability for Fe78M9B13 (M = Nb, Si, and Zr) alloys, J. Appl. Phys., 2009, vol. 105, 013531. DOI: 10.1063/1.3041473

Tsepelev V., Starodubtsev Yu., Wu K.M., Kochetkova Ye.A. Nanoparticles size in Fe73.5Cu1Mo3Si13.5B9 melt, Key Eng. Mater, 2020.

Tsepelev V., Starodubtsev Yu., Konashkov V. et al. Melt viscosity of nanocrystalline alloys in the model of free volume, J. Alloys and Comp., 2019, vol. 790, pp. 547-550. DOI: 10.1016/j.jallcom.2019.03.106



  • There are currently no refbacks.

Copyright (c) 2021 Ye. A. Kochetkova, Yu. N. Starodubtsev, V. S. Tsepelev

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818


Another version of the web site: