Simulation of Behavior of Explosion Welding Four-Layer Titanium-Steel Composites at Thermo-Power Loads

L.M. Gurevich, Yu.P. Trykov, R.E. Novikov, A.A. Zagrebina

Abstract


The simulation of deformation of titanium-steel composite VT6-VN2-M1-12H18N10T with varying the relative thickness of the interlayer M1 and temperatures 300 and 600 °С by the package SIMULIA/Abaqus. The finite element simulation confirmed that the decrease in the relative thickness of the copper layer in the four-layer composite VT6-VN2-M1-12Cr18Ni10Ti leads to increase its strength with the localization of plastic deformation in copper. When the relative thickness ?Cu ? 0,01 begins a significant deformation of steel 12H18N10T.


Full Text:

PDF

References


Trykov Yu.P., Gurevich L.M., Shmorgun V.G. Titanostalnye kompozity I soedineniya [Titan-steel composites], Volgograd, VSTU, 2013, 344 p. (in Russ.)

Trykov Yu.P., Gurevich L.M., Kuskov Yu.N., Kiselev O.S., Bogdanov A.I. The calculation of the strength of explosion welded composite with mechanical heterogeneity soft layers [Raschet na prochnost svarennykh vzryvom kompozitsionnykh soedineniy s mekhanicheski neodnorodnymi myagkimi prosloykami], Deformatsiya I razrushenie materialov [Deformation and fracture of materials], 2010, no. 3, pp. 11-14. (in Russ.)

Trykov Yu.P., Gurevich L.M., Pronichev D.V. Kompozitsionnye perekhodniki [Composite adapter], Volgograd, VSTU, 2007, 328 p. (in Russ.)

Trykov Yu.P., Gurevich L.M., Kuskov Yu.N., Samarskiy D.S., Kiselev O.S., Bogdanov A.I. The strength of explosion welded joints with composite interlayers [Prochnost svarivaemykh vzryvom soedineniy s kompozitnymi prosloykami], Konstruktsii iz kompozitsionnykh materialov [Constructions of composite materials], 2009, vol. 4, pp. 17-25. (in Russ.)

Trykov Yu.P., Belousov V.P., Gurevich L.M., Rogozin V.D., Pisarev S.P. Investigation the kinetics of deformation and fracture of explosion welded four-layer titanium-steel composites [Issledivanie kinetiki deformatsii I razryshenia svarenykh vzryvom chetyrekhsloynykh titanostalnykh kompozitov], Deformatsiya I razrushenie materialov [Deformation and fracture of materials], 2007, no. 8, pp. 31-37. (in Russ.)

L. Li, N. He, A FEA study on mechanisms of saw-tooth chip deformation in high speed cutting of Ti-6A1-4V alloy, Proc. 1th International Conference on High Speed Machining, Metz, France, 2006, pp. 759-767.

Sia Nemat-Nasser, Weiguo Guo. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates, Materials Science and Engineering, 2000, pp. 202-210. DOI: 10.1016/S0921-5093(00)00740-1

Johnson G.R., Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proc. of the 7th International Symposium on Ballistics, 1983, pp. 541-547.

Chandrasekaran, R. M'Saoubi. H. Chazal, Modelling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar tests, Machining Science and Technology, 2005, no. 9, pp. 131-145. DOI: 10.1081/MST-200051380




DOI: http://dx.doi.org/10.24892/RIJIE/20150303

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 L.M. Gurevich, Yu.P. Trykov, R.E. Novikov, A.A. Zagrebina

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818

E-mail: indust.engineering.ru@gmail.com

Another version of the web site: http://indust-engineering.ru