Mathematical Model of the Power Circuit of STATCOM of Large Capacity

T.R. Khramshin, I.R. Abdulveleev, G.P. Kornilov


The article describes a mathematical model of the power circuit STATCOMs high power, which includes the transformer and converter. The model is developed to analyze the conditions of powerful electromagnetic compatibility STATCOMs with the power supply and minimize the total harmonic distortion of voltage. A distinctive feature of the model is that the twelve-implemented scheme, where the two primary windings are connected in series and the two secondary windings have different groups of compounds. Converter output voltage is formed by comparing the three-level inverter switching angles with the reference signal increases linearly over the period of the supply voltage. Switching angles are calculated based on the method of pulse-width modulation to remove the selected harmonics. In order to improve the harmonic content of the line current inverter power circuit comprises interfacial smoothing reactor. A mathematical model of the power circuit STATCOMs large capacity allows you to get the phase voltages at the output relative to the zero point of the capacitor and to calculate the primary and secondary current transformers. Described solutions and algorithms are implemented by structural modeling package Simulink environment Matlab. The simulation results showed a rather low level of higher harmonics in the mains current converter. Total Harmonic Distortion (THD) of less than 4%, and the most significant are the 35th and 49th harmonics.

Full Text:



Khramshin T.R., Krubtsov D.S., Kornilov G.P. Evaluation methods of pulse width modulation voltage rectifiers active mills, Russian Internet Journal of Industrial Engineering, 2013, no. 2, pp. 48-52. (in Russ.). DOI: 10.24892/RIJIE/20130207

Kornilov G.P., Khramshin T.R., Chemetov A.N. et al. Modern methods of reactive power compensation large steel electric actuators [Sovremennyie sposoby kompensatsii reaktivnoy moschnosti krupnyih metallurgicheskih privodov], Izvestiya VUZov, Elektromehanika [Proceedings of the universities, Electromechanics], 2009, no. 1, pp. 28-31. (in Russ.)

Hingorani N.G., Gyugi L. Understanding FACTS. Concepts and technology of flexible AC transmission systems, New York, IEEE Press, 1999, 432 p.

Song Q., Liu W., Yuan Z. Multilevel optimal modulation and dynamic control strategies for STATCOMs using cascaded multilevel inverters, IEEE transactions on power delivery, 2007, vol. 22, no. 3, pp. 1937-1946. DOI: 10.1109/TPWRD.2007.899771

Maklakov A.S., Radionov A.A. Influence of AFE rectifier with different types of PWM on supply power, Russian Internet Journal of Industrial Engineering, 2013, no. 2, pp. 40-47. (in Russ.). DOI: 10.24892/RIJIE/20130206

Khramshin T.R., Abdulveleev I.R., Kornilov G.P. Implementation of EMC powerful electrical systems [Obespechenie elektromagnitnoy sovmestimosti moschnyih elektrotehnicheskih kompleksov], Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta Seriya Energetika [Bulletin of the South Ural State University. Series: Power Engineering], 2015, no. 1, pp. 82-93 (in Russ.)

Khramshin T.R., Krubtsov D.S., Kornilov G.P. A mathematical model of the main power circuit of electric rolling mills, Russian Internet Journal of Electrical Engineering, 2014, vol. 1, no. 1, pp. 3-7. (in Russ.). DOI: 10.24892/RIJEE/20140101

Kornilov G.P., Nikolaev A.A., Khramshin T.R., Murzikov A.A. Modelirovaniye elektrotekhnicheskikh kompleksov metallurgicheskikh predpriyatiy: ucheb. posobiye [Simulation of electrical systems of metallurgical enterprises: tutorial], Magnitogorsk, MGTU Publ., 2012, 235 p. (in Russ.)

Li L., Czarkowski D., Liu Y., Pillay P. Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters, IEEE Trans. Ind. Applicat., 2000, vol. 36, no. 1, pp. 160-170. DOI: 10.1109/28.821811

Maklakov A.S. Simulation of the main electric drive of the plate mill rolling stand, Russian Internet Journal of Industrial Engineering, 2014, no. 3. pp. 16-25. (in Russ.). DOI: 10.24892/RIJIE/20140303

Nabae A., Takahashi I., Akagi H. A neutralpoint clamped PWM inverter, IEEE Trans. Ind. Applicat., 1981, vol. 1A-17, no. 5, pp. 518-523. DOI: 10.1109/TIA.1981.4503992

Almula A., Gebreel G.M. Simulation and implementation of two-level and three-level inverters by matlab and RT-LAB, Ohio, The Ohio State University, 2011, 136 p.

Chivite-Zabalza J., Vidal M., Izurza-Moreno P., Calvo G., Madariaga D. A large power, low-switching-frequency voltage source converter for FACTS applications with low effects on the transmission line, IEEE Transactions on power electronics, 2012, vol. 27, no. 12, p. 4868-4877. DOI: 10.1109/TPEL.2012.2192753

Shreyner R.T. Matematicheskoye modelirovaniye elektroprivodov peremennogo toka s poluprovodnikovymi preobrazovatelyami chastity [Mathematical modeling of AC drives with semiconductor frequency converters], Yekaterinburg, URO RAN, 2010, 654 p. (in Russ.)

Khramshin T.R. Kornilov G.P., Nikolaev A.A. et al. Study of the impact on the supply network of active high power rectifiers [Issledovanie vozdeystviya na pitayuschuyu set aktivnyih vyipryamiteley bolshoy moschnosti], Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta [Bulletin of Ivanovo State Power University], 2013, no. 1, pp. 80-83. (in Russ.)



  • There are currently no refbacks.

Copyright (c) 2016 T.R. Khramshin, I.R. Abdulveleev, G.P. Kornilov

© Russian Internet Journal of Electrical Engineering. ISSN 2313-8742


Another version of the web site: