Calculated and Experimental Study of Free Vibration of a Cylindrical Shell

D. A. Permyakov, A. S. Pantileev, S. V. Makhnovich

Abstract


In Calculated eigenfrequencies and modes were found by using modal analysis finite element model of a cylindrical shell. Experimental eigenfrequencies and modes produced by impulse excitation. To evaluate the correlation between the calculated and experimental modes of free vibration used Modal Assurance Criterion based on a comparison of the displacement vector of nods. However, such an evaluation is difficult because of the limited number of sensors and the initial imperfections that in the calculation model are not counted. In this work shows the influence of initial imperfections on their modes. According to the results of this study revealed nodes and shell zones where the differences between the compared modes are maximum. The value of the Modal Assurance Criterion improved by adjusting the calculated mode relatively experimental in the circumferential direction. Location imperfections zone and assessment of its impact are used to refine the calculation modes of the cylindrical shell

Full Text:

PDF

References


Mezhin V.S., Obukhov V.V. The practice of using modal tests to verify finite element models of rocket and space hardware [Praktika primeneniya modal'nykh ispytaniy dlya tseley verifikatsii konechno-elementnykh modeley konstruktsii izdeliy raketno-kosmicheskoy tekhniki], Kosmicheskaya tekhnika i tekhnologii [Space Engineering And Technology], 2014, no.1, pp. 86-91. (in Russ)

Allemang R.J., Randall J. The Modal Assurance Criterion (MAC): 20 Years of Use and Abuse, Sound and vibration, 2003, vol. 37, no. 8, pp. 14-23.

Fotsch D. Ewins D.J. Application of MAC in the Frequency Domain, Rolls Royce PLC-Report-PNR, 2000.

Avitabile P. Test-Analysis Correlation-Updating Considerations, University of Massachusetts Lowell – URL: http://faculty. uml. edu/pavitabile/22.515/Co rrelation_Topics_122901_1. pdf.

Pugach I.Yu. Razrabotka metodicheskogo obespecheniya povysheniya tochnosti modelirovaniya dinamicheskikh kharakteristik elementov konstruktsiy KA DZZ na stadii proektirovaniya i nazemnoy otrabotki: avtoref. dis. na soisk. uchen. step. kand. tekh. Nauk [Development of methodological support for improving the accuracy of modeling the dynamic characteristics of elements of a remote sensing satellite at the design stage and ground testing: author. dis. on the competition scholarly step. Cand. those. Sciences], Moscow, OJSC Corporation “VNIIEM”, 2015, 22 p. (in Russ.)

Potapov A.N. Sootnosheniya ortogonal'nosti sobstvennykh form kolebaniy v uprugo plasticheskikh dissipativnykh sistemakh [Orthogonality relations for eigenmodes of oscillations in elastic-plastic dissipative systems], Chelyabinsk, Publishing house of SUSU, 2003, 13 p. (in Russ.)

Ambartsumyan S.A. Obshchaya teoriya anizotropnykh obolochek [General theory of anisotropic shells], Moscow, Science, 1974, 448 p. (in Russ.)

Vlasov V.Z. Obshchaya teoriya anizotropnykh obolochek [The general theory of shells and its application in engineering], Moscow, Gostekhizda, 1949, 784 p. (in Russ.)

Gontkevich V.S. Sobstvennye kolebaniya plastinok i obolochek [Own oscillations of plates and shells], Kiev, Naukova Dumka, 1964, 287 p. (in Russ.)

Panovko Ya.G. Vvedenie v teoriyu mekhanicheskikh kolebaniy [Introduction to the theory of mechanical vibrations], Moscow, Science, 1991, 256 p. (in Russ.)

Breslavsky V.E. Own oscillations of a circular cylindrical shell under the action of hydrostatic pressure [Sobstvennye kolebaniya krugovoy tsilindricheskoy obolochki, nakhodyashcheysya pod deystviem gidrostaticheskogo davleniya], Izv. AN SSSR, OTN [Izv. USSR Academy of Sciences, REF], 1956, no.12. (in Russ.)

Skubachevsky G.S. Aviatsionnye gazoturbinnye dvigateli: konstruktsiya i raschet detaley [Aviation gas turbine engines: design and calculation of parts], Moscow, Mashinostroenie, 1984, 208 p. (in Russ.)

Onashvili O.D. Nekotorye dinamicheskie zadachi teorii obolochek [Some dynamic problems of shell theory], Publishing House of the Academy of Sciences of the USSR, 1957, 195 p. (in Russ.)

Breslavsky V.E. Oscillations of cylindrical shells [O kolebaniyakh tsilindricheskikh obolochek], Inzhenernyy sbornik [Engineering collection], 1953, Part 6, pp. 109-118. (in Russ.)

Arnold R.N., Warburton B.B. Flexural vibrations of the walls of thin cylindrical shells having free supported ends, Proc. of the Roy.Soc. of London, (A), 1949, pp. 238-256. DOI: 10.1098/rspa.1949.0061

GOST ISO 7626-5-99 Vibratsiya i udar. Eksperimental'noe opredelenie mekhanicheskoy podvizhnosti. Chast' 5. Izmereniya, ispol'zuyushchie udarnoe vozbuzhdenie vozbuditelem, ne prikreplyaemym k konstruktsii [Vibration and shock. Experimental determination of mechanical mobility. Part 5. Measurements using shock excitation by a pathogen not attached to a structure], Minsk, Interstate Council for Standardization, Metrology and Certification, 2000, 20 p. (in Russ.)

Ponomarev I.S., Makhnovich S.V., Pantileev A.S. Features of experimental determination of frequencies and forms of natural oscillations of a cylindrical shell [Osobennosti eksperimental'nogo opredeleniya chastot i form sobstvennykh kolebaniy tsilindricheskoy obolochki], Nauchnyy vestnik NGTU [Scientific Herald of the NSTU], 2016, no.3 (64), pp. 44-58. (in Russ.)

Helen V., Lammens S., Sas P. Osobennosti eksperimental'nogo opredeleniya chastot i form sobstvennykh kolebaniy tsilindricheskoy obolochki [Modal analysis: theory and testing], Moscow, Novatest, 2010, 319 p. (in Russ.)

Miroslav P. Michal B. Modal assurance criterion, Procedia Engineering, 2012, vol. 48, pp. 543-548. DOI: 10.1016/j.proeng.2012.09.551




DOI: http://dx.doi.org/10.24892/RIJIE/20180201

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 A. D. Permyakov, S. A. Pantileev, V. S. Makhnovich

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818

E-mail: indust.engineering.ru@gmail.com

Another version of the web site: http://indust-engineering.ru