Thermodynamic Simulation of Joint Pyrometallurgical Processing of Oxidized Nickel Ores and Sulfide Copper Ores

A. M. Klyushnikov, E. N. Selivanov

Abstract


The results of thermodynamic simulation of phase formation under conditions of joint reductive and sulfidating melting of oxidized nickel ores and sulfide copper ores are presented. The heating of a working body that is close in concern of phase composition to a mixture of nickel ores and copper ores with CaO and carbon taken in a weight ratio of 100 : (0–60) : 10 : (0–5) transforms the initial compounds, as well as changes the forms of existence of non-ferrous metals. At 1200–1500 °C, an oxide and sulfide mass is formed, mainly represented by troilite, quartz and metasilicates of iron, magnesium, aluminum and calcium. Iron is distributed between troilite, ferrosilite, fayalite, hedenbergite, wustite, and metallic phase. Nickel, copper and cobalt are found in the form of primary sulfides and metals. Separation of the working body into the sulfide-metal and oxide groups of the phases makes it possible to predict the production of matte, which concentrates nickel, cobalt and copper quantitatively. The addition of a carbon reductant increases the metallization of matte, which determines the growth of extraction of nickel, cobalt and copper into the matte. Melting (1300 °C) of a charge consisting of nickel ore, copper ore cinder (desulfurization degree after roasting is 78–93 %), CaO, and carbon taken in a weight ratio of 100 : (60–80) : 10 : (1–3) will allow to allocate the matte (10.4 % of charge), which meets the requirements of existing enterprises. The chemical composition of matte, % wt.: 61.5 Fe, 25.9 S, 6.3 Ni, 4.2 Cu, 0.79 Co, 1.2 Zn, 0.08 Pb, 0.01 As. A low level of desulfurization after melting (1–3 %) ensures the ecological efficiency of the proposed method of processing of raw materials. The obtained information is useful for improving the technology of processing of refractory ores

Full Text:

PDF

References


Selivanov E.N., Klyushnikov A.M., Gulyaeva R.I. et al. Prospects for direct metallurgical processing of sulfide ores [Perspektivy pryamoy metallurgicheskoy pererabotki sul'fidnykh rud], Trudy "Perspektivy razvitiya metallurgii i mashinostroeniya s ispol'zovaniem zavershennykh fundamental'nykh issledovaniy i NIOKR" [Proc. "Prospects for the development of metallurgy and mechanical engineering with the use of completed basic research and R & D"], Ekaterinburg, 2015, pp. 309-312. (in Russ.)

Selivanov E.N., Resnick I.D., Sorokin A.A. et al. Prospects for the production of nickel from oxidized nickel ores of the Urals [Perspektivy proizvodstva nikelya iz okislennykh nikelevykh rud Urala], Trudy "Nauchnye osnovy i praktika razvedki i pererabotki rud i tekhnogennogo syr'ya" [Proc. "Scientific bases and practice of exploration and processing of ores and technogenic raw materials"], Ekaterinburg, AMB, 2003, pp. 177-184. (in Russ.)

Selivanov E.N., Tolknov D.A., Chumarev V.M. Prospects for smelting of oxide and sulphide ores on copper-nickel matte [Perspektivy plavki oksidnykh i sul'fidnykh rud na medno-nikelevyy shteyn], Tsvetnaya metallurgiya [Non-ferrous metallurgy], 2011, no. 11, pp. 41-43. (in Russ.)

Selivanov E.N., Klyushnikov A.M., Gulyaev R.I. Technical and economical assessment of direct metallurgical processing of sulfide ores [Tekhniko-ekonomicheskaya otsenka pryamoy metallurgicheskoy pererabotki sul'fidnykh rud], Tsvetnaya metallurgiya [Nonferrous metallurgy], 2015, no.3. pp. 15-21. (in Russ.)

Ageev N.G., Naboichenko S.S. Metallurgicheskie raschety s ispol'zovaniem paketa prikladnykh programm HSC Chemistry: uchebnoe posobie [Metallurgical calculations using the HSC Chemistry application package: study guide], Ekaterinburg, Ural University Publishing House, 2016, 124 p. (in Russ.)

Tyushnyakov S.N., Selivanov E.N. Thermodynamic simulation of phase formation during cooling of zinc-containing cooper-smelting slag [Termodinamicheskoe modelirovanie fazoobrazovaniya pri okhlazhdenii tsinksoderzhashchego medeplavil'nogo shlaka], Butlerovskie soobshcheniya [Butlerov Communications], 2015, vol. 43, no.9, pp. 102-107. (in Russ.)

Eriksson G., Hack K. ChemSage – a Computer Program for the Calculation of Complex Chemical Equilibria, Metallurgical Trans. B, 1990, vol. 21, pp. 1013-1023. DOI: 10.1007/BF02670272

Klyushnikov A.M., Selivanov E.N. Thermodynamic modeling of the joint processing of oxidized nickel ores and sulfide copper-bearing ores [Termodinamicheskoe modelirovanie sovmestnoy pererabotki okislennoy nikelevoy i sul'fidnoy mednoy rud], Butlerovskie soobshcheniya [Butlerov Communications], 2017, vol. 49, no.1, pp. 34-42. (in Russ.)

Vatolin N.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh [Thermodynamic modeling in high-temperature inorganic systems], Moscow, Metallurgy, 1994, 352 p. (in Russ.)

Udalov Yu.P. Primenenie programmnykh kompleksov vychislitel'noy i geometricheskoy termodinamiki v proektirovanii tekhnologicheskikh protsessov neorganicheskikh veshchestv: uchebnoe posobie [The use of software complexes of computational and geometric thermodynamics in the design of technological processes of inorganic substances: tutorial], Saint Petersburg, SPbSTI (TU), 2014, 147 p. (in Russ.)

Akinfiev N.N., Epifanova S.S. Issledovaniya v uchebnom praktikume po khimii (termodinamika) [Research in a training workshop in chemistry (thermodynamics)], Moscow, RGGRU, 2008, 29 p. (in Russ.)

Reznik I.D., Ermakov G.P., Schneerson Y.M. Nikel': v 3 t. T. 2 [Nickel], Moscow, Science and Technology, 2001, 468 p. (in Russ.)

Reznik I.D. Nikel': v 3 t. T. 3 [Nickel], Moscow, Science and Technology, 2003, 608 p. (in Russ.)

Reznik I.D. Nikel': v 3 t. T. 1 [Nickel], Moscow, Science and Technology, 1995, 440 p. (in Russ.)

Vanyukov A.V., Utkin N.I. Kompleksnaya pererabotka mednogo i nikelevogo syr'ya: uchebnik dlya vuzov [Complex processing of copper and nickel raw materials: a textbook for universities], Chelyabinsk, Metallurgy. Chelyabinsk Branch, 1988, 432 p. (in Russ.)

Newton R.C. Thermodynamics of Minerals and Melts, Heidelberg – Berlin, Springer–Verlag New York Inc., 1981. DOI: 10.1002/crat.2170180519

Wesolowski M. Thermal decomposition of talc: a review, Thermochimica Acta, 1984, vol. 78, iss. 1-3, pp. 395-421. DOI: 10.1016/0040-6031(84)87165-8

Khoroshavin A.G. Forsterit [Forsterit], Moscow, Heat Engineering, 2004, 368 p. (in Russ.)

Charpentier L., Masset P.J. Thermal Decomposition of Pyrite FeS2 under Reducing Conditions, Materials Science Forum, 2010, vols. 654-656, pp. 2398-2401. DOI: 10.4028/www.scientific.net/MSF.654-656.2398

Korotich V.I., Bratchikov S.G. Metallurgiya chernykh metallov [Metallurgy of ferrous metals], Moscow, Metallurgy, 1987, 240 p. (in Russ.)




DOI: http://dx.doi.org/10.24892/RIJIE/20180307

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 A. M. Klyushnikov, E. N. Selivanov

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818

E-mail: indust.engineering.ru@gmail.com

Another version of the web site: http://indust-engineering.ru