Investigation of Magnetic Properties of Various Structural Classes Steels in Weak Magnetic Fields Characteristic for Generation of Thermoelectric Currents in Electron Beam Wwelding

I. A. Kharitonov, R. V. Rodyakina, A. L. Goncharov


The results of studies of magnetic and thermoelectric properties of pearlite, martensitic and austenitic steels, as well as cobalt and nickel based alloys are presented. The magnetization curves for materials from among the studied ones, as well as dependences of absolute thermoelectric power on the material temperature, are obtained. It was found that for ferromagnetic substances in weak magnetic fields the dependence of magnetic induction on the magnetic field strength is non-linear. This allows to conclude that magnetic permeability of such medium is not a constant, but can be described, for example, by a third-order polynomial.

Full Text:



Dragunov V.K., Chepurin M.V. Electron beam welding of dissimilar alloys in the conditions of thermoelectric currents generation [ELS raznorodnykh splavov v usloviyakh generatsii termoelektricheskikh tokov], Svarochnoe proizvodstvo [Welding Production], 2001, no.12, pp. 8-16. (in Russ.)

Goncharov A.L. Investigation of thermoelectric power for steels and alloys of various structural classes during the process of electron beam welding [Issledovanie termoeds staley i splavov razlichnykh strukturnykh klassov pri ELS], Svarochnoe proizvodstvo [Welding Production], 2010, no.4, pp. 12-17. (in Russ.)

Ziolkowski M., Hartmut B. Modelling of Seebeck effect in electron beam deep welding of dissimilar metals, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009, vol. 28. DOI: 10.1108/03321640910918940

Chen, Xin & Pang, Shengyong & Shao, Xinyu & Wang, Chunming & Xiao, Jianzhong & Jiang, Ping. Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel, Optics and Lasers in Engineering, 2017, no.91, pp. 196-205. DOI: 10.1016/j.optlaseng.2016.12.001

Mladenov G.M., Trushnikov D.N., Koleva E.G., Belenkiy V.Ya. Parameters and some applications of plasma generated during keyhole welding using a highly concentrated energy beam – an overview, International Journal of Engineering Research & Science (IJOER), 2016, vol. 2, issue 3.

Nguyen-Kuok Shi. Theory of Low-Temperature Plasma Physics, New York, Springer, 2017.

Blakeley P.I., Sanderson A. The origin and effect of magnetic fields in electron beam welding, Weld. J., 1984, vol. 63, no.1, pp. 42-49.

Ruge I., Oestmann C., Decker I. et al. Welding of dissimilar by using the method of electron beam welding with filler wire, Electron and Laser beam weld. Proc. Int. Conf, Tokyo, 14 – 15 July, 1986, pp. 193-203.

Nazarenko O.K. Electron beam deviation during the process of electron beam welding [Otklonenie puchka elektronov pri elektronno-luchevoy svarke ], Avtomaticheskaya svarka [Automatic welding], 1982, no.1, pp. 33-39. (in Russ.)

Neubert G., Spiegler M. Verfahren zum selbsttatigen Positionieren des Strahls beim Elektronenstrahlschweiben // ZIS.-Mitt, 1976, Bd. 18, no.2, pp. 152-158.

Watanabe K., Shida T., Susuki M. et al. Some problems associated with deep penetration electron beam welding of heavy section steels, 2nd Int. Symp. Jap. Weld. Soc. Osaka, 1975, vol. 1, pp. 69-74.

A study on occurrence and prevention of defects of EBW (report 2) / K. Watanabe, T. Shida, M. Susuki et al. // J. Jap. Weld. Soc. 1975. Vol. 44, № 2. P. 121–127.

Wei P.S., Lii T.W. Elektron beam deflection when welding dissimilar metals, ASME Journal of Heat Transfer, 1990, vol.112, no.8, pp. 714-720. DOI: 10.1115/1.2910445

Kropotin N.V., Lebedev V.G., Fedosimov D.A. Investigation of a binary alloy crystallization process in auto-model approximation [Issledovanie protsessa kristallizatsii binarnogo splava v avtomodel'nom priblizhenii], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 10, no.4, pp. 436-447. (in Russ.)

Erofeev V.A., Levin Yu.Yi., Maslennikov A.V. Simulation of non-stationary formation of welded joints in pulsed laser welding [Modelirovanie nestatsionarnogo formirovaniya svarnykh soedineniy pri impul'snoy lazernoy svarke], Svarka i diagnostika [Welding and Diagnostics], 2010, no.3, pp. 17-21. (in Russ.)

Lei Wang, Nan Wang, Nikolas Provatas Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys, Acta Materialia, 2017, vol. 127, pp. 302-312. DOI: 10.1016/j.actamat.2016.11.058

Kou S. A simple index for predicting the susceptibility to solidification cracking, Welding Journal, 2015, volume 94, Issue 12, pp. 374-388.

Yunpeng Mei, Yongchang Liu, Chenxi Liu, Chong Li, Liming Yu, Qianying Guo, Huijun Li. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718, Materials & Design, 2016, volume 89, pp. 964-977. DOI: 10.1016/j.matdes.2015.10.082

Novokreshchenov V.V., Rodyakina R.V., Karimbekov M.A. Physical and technological features of formation of large thickness welded joints in electron beam welding, Solid State Phenomena, 2017, vol. 265 SSP, pp. 237-244. DOI: 10.4028/

Shcherbakov A.V., Rodyakina R.V., Kozhechenko A.S., Gaponova D.A., Foncharov A.L., Dragunov V.K. An experimental study of current-density distributions of a technological electron beam, Technical Physics Letters, 2017, volume 43, issue 11, pp. 958-960. DOI: 10.1134/S1063785017110104



  • There are currently no refbacks.

Copyright (c) 2020 I. A. Kharitonov, R. V. Rodyakina, A. L. Goncharov

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818


Another version of the web site: