Experimental Production of Multicomponent Crystals with M-type Hexaferrite Structure

O. V. Zaitseva, D. E. Zhivulin, D. P. Galkina

Abstract


The experimental production of multicomponent crystals with M-type hexaferrite structure, the qualitative and quantitative composition of which reflects the formula AB12O19, where A is Ba, Pb, Sr, Ca, Zn, and B is Fe, Mn, Ni, Ti, Al, Cu, W is carried out. The resulting material of this composition in the future can provide the ability to smoothly change the frequency of ferromagnetic resonance and throughput. In this way, the properties required by electronic equipment manufacturers can be obtained. In the course of the research, have been studied the possibilities of using different methods for synthesizing experimental samples – solid-phase sintering, melting in a platinum crucible, and melting in a stainless steel crucible. According to SEM and EDX results of the obtained samples, two main types of multicomponent crystalline phases were found: hexagonal crystals having the structure of hexaferrite M-type and octahedral crystals having the structure of spinel AB2O4

Full Text:

PDF

References


Gao M.C., Yeh J.-W., Liaw P.K., Zhang Y. High-Entropy Alloys. Fundamentals and Applications, Switzerland, Springer International Publishing, 2016, 524 p.

Pogrebnyak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The Structure and Properties of High-entropy Alloys and Nitride Coatings Based on Them, Russian Chemical Reviews, 2014, vol. 83, is. 11, pp. 1027-1061. DOI: 10.1070/rcr4407

Rost C.M., Sachet E., Borman T. et al. Entropy-stabilized Oxides, Nature Communications, 2015, vol. 6, pp. 84-85.

Jiang L., Lu Y.P., Jiang H. et al. Formation Rules of Single Phase Solid Solution in High Entropy Alloys, Materials Science and Technology, 2016, vol. 32, is. 6, pp. 588-592. DOI: 10.1179/1743284715y.0000000130

Shen W.J., Tsai M.H., Tsai K.Y. et al. Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride, Journal of the Electrochemical Society, 2013, vol. 160, is. 11, pp. 531-535.

Ren B., Shen Z., Liu Z. Structure and Mechanical Properties of Multi-Element (AlCrMnMoNiZr)Nx Coatings by Reactive Magnetron Sputtering, Journal of Alloys and Compounds, 2013, vol. 560, pp. 171-176. DOI: 10.1016/j.jallcom.2013.01.148

Sheng W., Yang X., Wang C., Zhang Y. Nano-Crystallization of High-Entropy Amorphous NbTiAlSiWxNy Films Prepared by Magnetron Sputtering, Entropy, 2016, vol. 18, is. 6, pp. 226-231. DOI: 10.3390/e18060226

Gild J., Zhang Y., Harrington T. et al. High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics, Scientific Reports, 2016, vol. 6, is. 37946, pp. 1-10. DOI: 10.1038/srep37946

Lin M.-I., Tsai M.-H., Shen W.-J., Yeh J.-W. Evolution of Structure and Properties of Multi-Component (AlCrTaTiZr)Ox Films, Thin Solid Films, 2010, vol. 518, is. 10, pp. 2732-2737. DOI: 10.1016/j.tsf.2009.10.142

Rost C.M., Sachet E., Borman T. et al. Entropy-Stabilized Oxides, Nature Communications, 2015, vol. 6, is. 8485, pp. 1-8.

B?rardan D., Franger S., Dragoe D. et al. Colossal Dielectric Constant in High Entropy Oxides, Rapid Research Letters, 2016, vol.10, is. 4, pp. 328-333. DOI: 10.1002/pssr.201600043

Sarkar A., Djenadic R., Usharani N.J. et al. Nanocrystalline Multicomponent Entropy Stabilised Transition Metal Oxides, Journal of the European Ceramic Society, 2017, vol. 37, is. 2, pp. 747-754. DOI: 10.1016/j.jeurceramsoc.2016.09.018

Berardan D., Franger S., Meena A.K., Dragoe N. Room Temperature Lithium Superionic Conductivity in High Entropy Oxides, Journal of Materials Chemistry A, 2016, vol. 4, is. 24, pp. 9536-9541. DOI: 10.1039/c6ta03249d

Rak Zs., Rost C.M., Lim M. et al. Charge Compensation and Electrostatic Transferability in Three Entropy-Stabilized Oxides: Results from Density Functional Theory Calculations, Journal of Applied Physics, 2016, vol. 120, is. 095105, pp. 1-11. DOI: 10.1063/1.4962135

Rost C.M., Rak Z., Brenner D.W., Maria J.-P. Local Structure of the MgxNixCoxCuxZnxO(x=0.2) Entropy-Stabilized Oxide: An EXAFS Study, Journal of the American Ceramic Society, 2017, vol. 100, is. 6, pp. 2732-2738. DOI: 10.1111/jace.14756

Berardan D., Meena A.K., Franger S. et al. Controlled Jahn-Teller Distortion in (MgCoNiCuZn)O-Based High Entropy Oxides, Journal of Alloys and Compounds, 2017, vol. 704, pp. 693-700. DOI: 10.1016/j.jallcom.2017.02.070

Sarkar A., Loho C., Velasco L. et al.Multicomponent Equiatomic Rare Earth Oxides with Narrow Band Gap and Associated Praseodymium Multivalency, Dalton Transactions, 2017, vol. 46, is. 36, pp. 12167-12176. DOI: 10.1039/c7dt02077e

Djenadic R., Sarkar A., Clemens O. et al. Multicomponent Equiatomic Rare Earth Oxides, Materials Research Letters, 2017, vol. 5, is 2, pp. 102-109.

Lei Z., Liu X., Li R. et al. Ultrastable Metal Oxide Nanotube Arrays Achieved by Entropy-stabilization Engineering, Scripta Materialia, 2018, vol. 146, pp. 340-343. DOI: 10.1016/j.scriptamat.2017.12.025

Tsau Ch.-H., Hwang Zh.-Y., Chen S.-K. The Microstructures and Electrical Resistivity of (Al, Cr, Ti)FeCoNiOx High-Entropy Alloy Oxide Thin Films, Advances in Materials Science and Engineering, 2015, vol. 2015, pp. 1-6. DOI: 10.1155/2015/353140

D?browa J., Stygar M., Miku?a A. et al. Synthesis and Microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxide Characterized by Spinel Structure, Materials Letters, 2018, vol. 216, pp. 32-36. DOI: 10.1016/j.matlet.2017.12.148

Jiang S., Hu T., Gild J. et al. A New Class of High-entropy Perovskite Oxides, Scripta Materialia, 2018, vol. 142, pp. 116-120. DOI: 10.1016/j.scriptamat.2017.08.040

Rare Earth and Transition Metal Based Entropy Stabilized Perovskite Type Oxides / A. Sarkar, R. Djenadic, D.Wang et al. // Journal of the European Ceramic Societ. – 2018. – Vol. 38, Is. 5. – P. 2318-2327. DOI: 10.1016/j.jeurceramsoc.2017.12.058

Zaitseva O.V., Vinnik D.A., Trofimov E.A. The Poly-Substituted M-Type Hexaferrite Crystals Growth, Materials Science Forum, 2019, vol. 946, pp. 186-191. DOI: 10.4028/www.scientific.net/msf.946.186

Galkina D.P., Zaitseva O.V., Chernukha A.S. Thermodynamic model for the description of polysubstituted crystals having the structure of M-type hexaferrites [Termodinamicheskaya model' dlya opisaniya polizameshchennykh kristallov, imeyushchikh strukturu geksaferritov M-tipa], Trudy XIV Rossiyskogo seminara "Komp'yuternoe modelirovanie fiziko-khimicheskikh svoystv stekol i rasplavov" [Proceedings of the XIV Russian seminar "Computer simulation of the physicochemical properties of glasses and melts", Kurgan, 2018, pp. 28-29. (in Russ.)

Zhivulin D.E., Vinnik D.A., Zaitseva O.V. Analysis of the possibility of experimental production of polysubstituted crystals with the structure of M-type hexaferrite [Analiz vozmozhnosti eksperimental'nogo polucheniya polizameshchennykh kristallov so strukturoy geksaferrita M-tipa], Mashinostroenie: setevoy elektronnyy nauchnyy zhurnal [Engineering: a network electronic scientific journal], 2019, vol. 7, no. 1, pp. 19-25. (in Russ.)

Vinnik D.A., Ustinov A.B., Zherebtsov D.A. et al. Structural and Millimeter-wave Characterization of Flux Grown Al Substituted Barium Hexaferrite Single Crystals, Ceramics International, 2015, vol. 41, is 10, pp. 12728-12733. DOI: 10.1016/j.ceramint.2015.06.105

Nemrava S., Vinnik D.A., Hu Z. et al. Three Oxidation States of Manganese in the Barium Hexaferrite BaFe12-xMnxO19, Inorganic Materials, 2017, vol. 56, pp. 3861-3866. DOI: 10.1021/acs.inorgchem.6b02688

Vinnik D.A., Ustinova I.A., Ustinov A.B. et al. Millimeter-wave Characterization of Aluminum Substituted Barium Lead Hexaferrite Single Crystals Grown from PbO–B2O3 Flux, Ceramics International, 2017, ol. 17, pp. 15800-15804. DOI: 10.1016/j.ceramint.2017.08.145

Vinnik D.A., Klygach D.S., Zhivulin V.E. et al. Electromagnetic Properties of BaFe12O19:Ti at Centimeter Wavelengths, Journal of Alloys and Compounds, 2018, vol. 755, pp. 177-183. DOI: 10.1016/j.jallcom.2018.05.337

Trukhanov S.V., Trukhanov A.V., Turchenko V.A. et al. Magnetic and Dipole Moments in Indium Doped Barium Hexaferrites, Journal of Magnetism and Magnetic Materials, 2018, vol. 457, pp. 83-96. DOI: 10.1016/j.jmmm.2018.02.078




DOI: http://dx.doi.org/10.24892/RIJIE/20200108

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 O. V. Zaitseva, D. E. Zhivulin, D. P. Galkina

© Russian Internet Journal of Industrial Engineering. ISSN 2310-0818

E-mail: indust.engineering.ru@gmail.com

Another version of the web site: http://indust-engineering.ru